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The effect of correlations between nucleons is discussed for the integrated cross section of photonuclear re­
actions, considering only the central force. The two-body potential used is well-behaved and velocity-
dependent. The calculations performed by first-order perturbation theory give an increase of about 14% for 
the integrated cross section above the value found by neglecting correlations. 

INTRODUCTION 

SUM-RULE calculations for nuclear photoeffect 
using the independent-particle model (IPM), in 

which knowledge only of the wave function for the 
ground state is required, are in fairly good agreement 
with experiment. However, photonuclear reactions at 
high energy are understandable only if we assume a 
strong correlation between nucleons. A model that con­
siders such correlations is the quasideuteron model as 
proposed by Levinger.1 This author studied the effect 
of this correlation on the bremsstrahlung-weighted 
cross section ab and found that it decreased by about 
10%.2 Okamoto3 calculated the same effect on the 
integrated cross section o-mt and bremsstrahlung-
weighted cross section ab and compared the results ob­
tained using the quasideuteron model with calculations 
made with IPM. He concludes that the independent-
particle model can be regarded as a good approximation 
for photonuclear reactions. Lately Okamoto4 has con­
sidered the effect of tensor forces and found that there 
exists a great discrepancy between the two models in 
the results of the photonuclear reactions. 

We shall calculate the effect of correlations between 
nucleons for (Tint, considering the two-body potential to 
be central with a velocity-dependent part as used by 
Rojo and Simmons,5 and replacing the static part of 
that potential by an equivalent Gaussian potential that 
satisfies effective-range theory, as done by Levinger et 
al.Q 

In Sec. I we shall study the results of the IPM, dis­
regarding correlations. In Sec. I I we shall study the 
effect of the quasideuteron model by first-order pertur­
bation theory; we find that it increases <rint about 
14%. 
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I. CALCULATIONS WITH IPM 

In the electric-dipole approximation, the integrated 
cross section is defined as 

G"in t= / <j(oo)dQO = -
Mc 

L~,n / o i (1) 

where f0n is the oscillator strength which, summed over 
all the states, gives 

M 
Znfon= <0|[Dff,s],*]|0>. (2) 

fl2 

I t is seen that the integrated cross section calculated 
with the electric-dipole approximation depends only 
on the wave functions for the ground state of the 
system. 

We assume a Hamiltonian of the form 

Pi2
 PJ2 f 

ff=E.—+L — + E Fo(l+*2V) 
2M 2M ul 

X 1 
+—\j>2W(r) + W(r)p*]\, (3) 

M J 

where the potential contains a static part with a fraction 
x of Majorana exchange and a velocity-dependent part 
as in Ref. 5; thus, 

\W(r) = 5 exp[— 3.6r], r in fermis. 

Disregarding correlation between nucleons, the 
ground-state wave function will be a product of plane 
waves. 

<r|0>=II n exppfo-r , ) ] exp[*(krry)] 
i J 

(i = proton, j = neutron), (4) 

with values k4, ky chosen to satisfy the Pauli principle. 
With these assumptions, and v=Vo(l+xPij)+(\/M) 
Xlp2W(r)+W(r)p^ 

2w2e2fi(NZ Mx 
0"int = \ 

Mc [ A 3fim 

X < 0 | E n - / F P , / | 0 ) + X ( 0 | E PP(r*)|0> (5) 
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leads to perturbation theory, 

crint= ISA (1+0.8^+0.37) MeV-mb. (6) 
> = | 0 > + £ 

(0\v\n) 

n^oEo—En 
(7) 

I t is seen that the velocity-dependent part increases the 
value of the integrated cross section by about the same 
amount as it is increased by the effect of Majorana ex- w h e r e \n) represents the excited state of the nucleus 
change force as treated by Levinger and Bethe.7 without correlations: 

The value calculated with Eq. (6) agrees fairly well |0) = |0-)|0-) 
with the experimental values obtained up to now. (8) 

\n)= K>K); 
II. CALCULATIONS WITH QUASIDEUTERON MODEL , . , . ^ . A • , +, • , 

^ where i refers to the proton and j to the neutron. 
If we assume correlations between nucleons, the wave One obtains, after substitution in (2), the following 

function of the ground state will be, in first-order expression: 

[NZ Mx {Q\v\n) 
<rint=60 < 0 | £ r* 2FoPtf" |0>+X<0|£ W(r^\0)+\ £ « ° l £ W{ri3)\n)+{n\T.W{ri3)\0)) 

[ A Sfl2 ij ij n^0EQ—En ij ij 

Mx (0\v\n) } 
E ( < 0 | L ^ 2 n P ^ N ) + ^ | E ^ 2 F o P , v | 0 . ) + 0 [ < 0 | z ; | ^ ) ] 2 • (9) 

3fl2 n^O EQ — En ij ij J 

The first two terms are the ones calculated by Levinger 
and Bethe; the third one has been calculated in Ref. 
6. We will calculate the remaining terms following the 
same steps as those used by Okamoto.3 

Fermi momentum (kF= 1.52/r0), leading to 

\M 12 
A ^ - ( ! + * > 

fi2 (2TT)9 
V / W(r)d*r 

< 0 | 7 0 ( l + « P ^ ) | n > ^{l)eli :ic ( I T ) 

(a) A x ^ X E 

Taking account of the fact that 

fi2 

where 

with 

En-Eo=s-(s+ki-kj), 
M 

S — Ki K̂  == Ky Ky , 

S ==: Ky K.<iz=z Kj K.{ , 

(10) 

( ID 

X [d*p [d*n [dH— . (14) 
J J J 1-(1+P~n) 

The Pauli principle is introduced through the relations 

\p\,\n\<l and \p+s'\ ,\p-s'\ > 1 . 

The evaluation of the triple ' 'integrals" in the above 
equation has been done by Euler8: 

r 1 4irP(/) 
dzp / d*n-

•I (12) 

one obtains 

\M 
^= — 

hm2 

X 
/ 

E E E W(r)e^^dh (13) 
s k ik f s - ( s + k » — ky) 

with ft the nuclear volume. The following substitutions 
are made: 

k;=&Fp, S = & F 1 , kj=kpTl, 

where JZF is the wave number corresponding to the 

7 J. S. Levinger and H. A. Bethe, Phys. Rev. 78, 115 (1950); 
hereafter referred as LB. 

l - ( l + p - n ) 15 I 

[ P ( 0 is given in the Appendix of Okamoto's work.] We 
use for VQ the Gaussian shape satisfying the effective-
range theory: 

Vo=-SoV0
fe-^^2, Fo ,= (229.2/62)MeVX10-2 6cm2 ; 

7 = C V ( 2 . 0 6 ) ^ ] , 

where so is the well depth parameter and b is the in­
trinsic range. We also set 

M Mr 
—$(!) = — / V0e

ikF2^T)dh 
fi2 ft2 Jo 

= -SoW0ir
s/2y3zxp(-iy2kF

2l2), ^ o = (M/h2)VQ
l, 

and b/ro— £, r0 being the nucleon radius, to obtain 

P(u)e~v2kF2u2 

Ai1=(l+^)\5o5(3.86i4) 
o [18.7+(3.0to)2]2 

-udu. (15) 

»H. Euler, Z. Physik, 105, 553 (1937). 
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Since we are interested in a bound on this integral, we The first integral is 
use several approximations to obtain 

Ai J<(l+x)0.006X3.86A6V4£, (16) W0 f r V - ^ V * ^ 1 ' ' ' ^ 

and with 3/2 

S0=l; X = 0.2; N=Z=A/2 JL^^Wo(6-kF
2yHf2)e-^2k^1'2, 

this becomes 

A 1
1 <0.156( iYZ/^)( l+^) . a n d substitution in (19) yields 

The conjugate term is equal to this last one since it is . ~ x 

real, (b) Using the same considerations, we proceed to A2
2 = —S0WO— —irz,2ybkF / 4TT(6—kF

2y2l2) 
evaluate 90 (2x)6 JQ 

X2 (0\p2W(r) + W(r)p2\n) s/nnn\nrt\ / i 2z, 272N ,7 ,onx 
Al2 = _ £ j L J i : I I l I f l i_ l (o |X;pF(f f y) |») . (17) XldP(l)G(l)exp(-iy2kF

2l2)dl, (20) 
i f E() — En V 

where G[i) has been calculated previously. 
This term can be written as Then 

\%2 (s2+s'2)G(s) A 9 ^ w , „_ 
Ai2 = E <0 |E W(*y)|»>, A22=-16WX/L2f8 

with 2M9^ Eo~En ij r 6 ~ w 

, X / P(u)e-™u3du. (21) 
G(j)= \W{r)e«"'Wr. (18) Vo [18.7+(3.04w)2]2 

We have taken 
After calculation this term becomes 

P(u> 

. . [ 1 8 . 7 + ( 3 . 0 4 M ) ^ ' ^ (2-06)6/2 

32 4 a = 72&F2= 1.12£2, and V=2u, 
£i=18.7 (1.59)14 -184.4 , 

3 3^2 After several approximations, such as neglecting 
, . , , . . r n i • (3.04^)2 for u<\ and 18.7 compared with (3.04w)2 for 

and with this value one finally obtains u> ^ w e 0 k t a j n 

A1
2=-0.022NZ/A. 3 4 3 

The conjugate term is equal to this, so A2
2^l6s0A ^Xx~~~?~6> (22) 

A i 2 + A i 2 * = - 0 . 0 4 4 . ¥ Z / ^ . 
and for £=2, s 0 = l 

So far we have calculated the term of the double com- this yields 
mutator belonging to the component of displacement in A 2 < 0 16(N7/A)x 
the direction of polarization of the incident radiation. ~" 
There remains to be calculated the part of the double The conjugate term of the perturbation has the same 
commutator depending on the exchange potential. This value, so 
first part was calculated by Okamoto, who obtained 

F J A2
2+A2

2*<0.32(A'Z/M)*. 
A2

1=0.058(AfZ/^>0
2*(l+*) • 

Adding all the contributions with the appropriate sign, 
The only term left is the exchange term for the velocity- o n e o b t a i n s f o r t h e n e t c o n t r ibu t ion of the correlation: 
dependent contribution. This term gives 

2Xx 12 r sinfl A = 60(A^Z/^i) (0 .300- 0.022o;+0.058x2) MeV-mb. 
A22=-SoWo kF* r*<r**'y*e**«'">r* _ . - . . ± . + . _ 

45 (2<7r)6 J 2w ^ o r t n e v a m e of x=% that corresponds to the case of a 
oo Serber mixture, this correction is about 14% of the value 

XdBd<f>dr / lfP(lf)G(lf)tx^{-ly2kFHf2)dlf. (19) obtained when no correlation is assumed and the IPM 
J0 is used [Eq.(6)] . 


